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Statistically induced phase transitions and
anyons in 1D optical lattices

Tassilo Keilmann'?, Simon Lanzmich', lan McCulloch® & Marco Roncaglia'**

Anyons—particles carrying fractional statistics that interpolate between bosons and
fermions—have been conjectured to exist in low-dimensional systems. In the context of the
fractional quantum Hall effect, quasi-particles made of electrons take the role of anyons whose
statistical exchange phase is fixed by the filling factor. Here we propose an experimental setup
to create anyons in one-dimensional lattices with fully tuneable exchange statistics. In our
setup, anyons are created by bosons with occupation-dependent hopping amplitudes, which
can be realized by assisted Raman tunnelling. The statistical angle can thus be controlled
in situ by modifying the relative phase of external driving fields. This opens the fascinating
possibility of smoothly transmuting bosons via anyons into fermions and of inducing a phase
transition by the mere control of the particle statistics as a free parameter. In particular,
we demonstrate how to induce a quantum phase transition from a superfluid into an exotic
Mott-like state where the particle distribution exhibits plateaus at fractional densities.
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aboson—a particle joining any number of identical particles

in a single-quantum state—or a fermion, characterized by
the sole occupancy of its state. The exchange of two fermions leads
due to the Pauli principle to a phase factor —1 in the total wave-
function, whereas the wavefunction of two bosons remains invari-
ant under particle exchange. More than 30 years ago, researchers
proposed a third fundamental category of particles living in two-
dimensional systems, ‘anyons™~. For two anyons, the wavefunction
acquires a fractional phase € under particle exchange, giving rise
to fractional statistics, with 0 < @< . For a few years, the physics of
anyons remained restricted to the two-dimensional world®, until
Haldane presented the concept of fractional statistics in arbitrary
dimensions’.

Anyons in one-dimension (1D) are still unexplored to a wide
extent. Recently, it has been put forward to create fractional statis-
tics in a 1D Hubbard model of fermions with correlated hopping
processes®. Anyons are realized in this case as low-energy elemen-
tary excitations.

Here, we introduce an exact mapping between anyons and bos-
ons in 1D. We show that a Hubbard model of anyons is equivalent
to a variant of the Bose-Hubbard model’ in which the bosonic
hopping amplitudes are state-dependent. This conditional-hop-
ping phase factor breaks reflection parity in the system, which is an
important ingredient to realize fractional statistics'’. We propose to
realize bosons with conditional-hopping amplitudes using assisted
Raman tunnelling in an optical lattice (OL)'"'*>. We discuss how the
direct control of the statistical phase can induce a quantum phase
transition from a bosonic superfluid into a Mott-like state, exhibit-
ing exotic Mott shells at fractional densities. The ‘statistical ramp’
transmutes bosons smoothly into ‘pseudofermions, with anyons as
intermediate steps.

Anyons in 1D are defined"'* by the generalized commutation
relations

l | sually, every particle in quantum theory is classified as either

ajaz - eﬂeSgn(]fk)aiaj =0j, ajo= eleSgn(Jfk)akaj, (1)
where the operators 4, a; create or annihilate an anyon on site j. The
sign function is such that sgn(j— k) =0 for j=k, hence, two particles
on the same site behave as ordinary bosons. In consequence, anyons
with statistics 8= are pseudofermions: although being bosons on-
site, they are fermions off-site.

Results

Mapping between anyons and bosons. We introduce an exact
mapping between anyons and bosons in 1D. Let us define the
fractional version of a Jordan-Wigner transformation,

j-1
aj=bjexp 10> n; ()
i=1

with n; = tl,-T a; = b,-T b; the number operator for both particle types.
Provided that the particles of type b are bosons, [bi,b;r ]=6;; and
[b;, b)] =0 we can show that the mapped operators a indeed obey the
anyonic commutation relations as introduced in equation (1). For a
proof see Methods. This mapping elucidates that anyons in 1D are
indeed non-local quasi-particles, made of bosons with an attached
string operator.

Our ultimate goal is to propose a realistic setup for demonstrat-
ing an interacting gas of anyons in 1D OLs. We therefore introduce
the Anyon-Hubbard model

where ] is the tunnelling amplitude connecting two neighbour-
ing sites and U is the on-site interaction energy. By inserting the
Anyon-Boson mapping, equation (2), the Hamiltonian H* can be
rewritten in terms of bosonic operators:

i0n;
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The mapped, bosonic Hamiltonian, é[h}ls describes bosons with a
occupation-dependent amplitude Je' 7 for hopping processes from
right to left (j+1—j). If the target site j is unoccupied, the hopping
amplitude is simply J. If it is occupied by one boson, the amplitude
reads Jel®, and so on. The conditional-hopping scheme is depicted
in Figure la. We emphasize that the non-local mapping between
anyons and bosons, equation (2), leads luckily to a purely local, and
thus viable Hamiltonian.

As expected from anyons, the reflection parity symmetry is bro-
ken' at the level of the commutation relations, equation (1). The
fractional Jordan-Wigner transformation, equation (2), transfers
this asymmetry also to the bosonic case: The resulting Hamiltonian,
equation (4), features a phase factor acting only on the left site j and
thus violates parity. Even in the absence of the on-site interaction,
U=0, the exponential operator in equation (4) gives rise to many-
body interactions, as expected for anyons®.

In the limit U/J—%, bosons are impenetrable and each site con-
tains at most one particle. In this case, the phase factor disappears
and the bosonic Hamiltonian H' reduces to an ordinary Tonks-Gir-
ardeau gas"%. However, we consider local occupation numbers
beyond the hard-core limit, n;> 1. Thus, anyons can exchange posi-
tions, changing the phase of the total wavefunction, and show non-
trivial features.

Experimental realization. In our experimental proposal, the key
point for realizing anyonic statistics is to induce a hopping term
with a phase shift, which depends on the occupation of the left-
hand site j, Figure 1b displays the basic concept. To distinguish
between different local occupational states, we require a non-zero
on-site interaction U. For simplicity, let us consider lattice site occu-
pations that are restricted to 7,=0, 1, 2 (higher local truncations
are also possible; Methods). The occupation-dependent tunnelling
and thus the conditional-hopping model equation (4) can be imple-
mented in OLs with present experimental techniques. We propose
to employ an assisted tunnelling scheme, based on ideas by Jaksch
and Zoller' and Juzeliunas et al.”®. The OL is tilted, with an energy
offset A between neighbouring sites, this additional field gradient
breaks reflection parity. Two different occupational states (note that
the occupational state 7;= 0 is not relevant) in either of the two sites
form in total a four-dimensional atomic ground state manifold,
which we propose to couple to an excited state |e) via four external
driving fields (labelled 1, 2, 3 and 4 in Fig. 1b). According to this
notation, singly and doubly occupied states are coupled by fields 2
and 1 in the left site and by 3 and 4 in the right site, respectively. The
excited state can be experimentally realized in at least two alterna-
tive ways.

First, two spin-dependent lattices?’** can be used. In the case
of Rb¥, one lattice for example traps atoms in the F=1, m,= -1
hyperfine state, assigned to the ground state manifold. The excited
state |e) can then be engineered as a vibrational state of a second
lattice, trapping atoms in the F=1, m,= 0 hyperfine state. Atoms
in the excited state would then be localized between the left
and right wells of the F=1, m,= -1 lattice, but not necessarily in
their centre.

L L
Y This implementation would offer the advantage of external driv-
H*=- ala.  +he)+—=Nn.(n:-1), (3) p g
]Z‘( it ) 2 z i =D ing fields in the radio-frequency regime. Such frequencies could
! / then still resolve® the typical energies U and A (both of the order
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Figure 1| Anyon-Boson mapping and schematic of the proposed
experiment. (a) Anyons in 1D can be mapped onto bosons featuring
occupation-dependent hopping amplitudes. (b) Assisted Raman
tunnelling can selectively address hopping processes connecting different
occupational states and induce a relative phase, realizing a fully tuneable
particle exchange statistics angle 6. Energies are not in scale.

of a few kHz), which is necessary to selectively couple to the four
different states in the ground state manifold.

Second, one can use two optical lattices, and trap ground state
manifold atoms in the red-detuned lattice, while the excited state
would live in the blue-detuned one. The driving fields necessary in
this case would be then, however, typically in the THz frequency
range, making a precise resolution of U and A more challeng-
ing for the experimentalist: in principle, a laser with a linewidth
Sinewian K U, A would be needed.

The effective tunnelling rates ], (ac {1, 2}, be {3, 4}) are calcu-
lated for four A-systems, laser frequencies @, and Rabi frequen-
cies Q. (ie{1, 2, 3, 4}) via adiabatic elimination, see Methods. We
emphasize that the tilt energy A disappears in the effective Hamil-
tonian after rotating out time-dependent phase factors: indeed this
energy offset is absorbed (or released) by the external radiation field,
yielding a total Hamiltonian without a tilt term (see also Jaksch and
Zoller" on this issue).

The following conditions on the effective tunnelling rates J,, have
to be satisfied in order to realize our model in equation (4):

o
[

Phase angle (0)
(NI

INE

Quasi momentum (k)

Figure 2 | Density distribution in quasi-momentum space (n,) as a
function of particle statistics 0. The shift of the density peaks with
increasing 6 displays a characteristic quadratic behaviour. The fit to the
trace of density maxima is depicted in white and yields fitting parameters
ko,=0.98287, o= —1.0511/7, f=0.9982. The inset displays the decrease
of the peak occupations with 6 (yellow circles) and indicates the
statistically induced phase transition from a superfluid to a Mott-like state.
Parameters: L =30, N=31, U/J=0.2.

where 0 is the anyonic exchange phase. For a more detailed consid-
eration of realistic energy scales and appropriate parameter regimes,
see Methods.

Density in quasi-momentum space. We have computed the
ground state wave function for the conditional-hopping Bose-Hub-
bard model, equation (4), using the Density Matrix Renormaliza-
tion Group (DMRG)**. In Figure 2, we plot the quasi-momentum
distribution

() =1 2 o) ?)
Y

as a function of the statistical phase angle 6. The case 6=0 corre-
sponds to ordinary bosons, which for the parameters chosen quasi-
condense. The density distribution in quasi-momentum space,
equation (7), is thus peaked at k=0. Increasing 6 to non-zero val-
ues, we find that the position of the peaks 6, (k) is shifted as a
nonlinear function of k. Indeed, for fillings N/L> 1 one finds a quad-
ratic behaviour 6, (k)= o(k—k,)*+ B. For fillings close to N/L=1,
p—m, ky—mand a— — 1/m. For higher fillings N/L —2, these fitting
parameters are altered, however, the characteristic quadratic
dependence is conserved.

In this analysis, we find two important characteristics of con-
ditional-hopping bosons and thus anyons in 1D. The quadratic
dependence of 6, on k contrasts ordinary magnetic fields (with
a constant phase factor €' in the kinetic Hamiltonian). In this case,
the shift of the peaks depends linearly on the phase angle 6. In the
anyonic case, however, the growth of correlations with increasing
0 may induce the characteristic quadratic trace, which could be
directly observed in OL experiments using standard time-of-flight
imaging.

An even more important observation is that the contrast of the
peaks (and the phase coherence) decays with increasing 6. The peak
values (n,(0=0,,.)) are plotted in the inset of Figure 2, in the pseud-
ofermionic limit (6—7) the peak is almost washed out. This suggests
that an increase of 6 transforms the initial quasi-condensate into a
quantum state where all phase coherence is lost. It will become evi-
dent in the subsequent paragraphs that this quantum state will turn
out to be a Mott-like state, with Mott plateaus emerging at fractional

J3=J24 =), (5)  densities. We emphasize that this quantum phase transition is only

Jia= s = Jel® driven by the statistical angle 6, all other parameters such as J/U

1=/ =)e (6)  are fixed. The loss of coherence can be understood as follows. With
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increasing 6 the occupation-dependent phase factor in equation (4)
becomes more and more important: hopping processes connect-
ing sites with different occupations will contribute different phases
and will cancel out in the kinetic Hamiltonian due to incoherent
superpositions. This destructive interference effect is amplified by
an increasing 6 and induces the localization of particles, yielding
an insulating phase. We emphasize that the present analysis of the
density distribution in momentum space refers to the bosonic par-
ticles only, (n)=(b,b,). Namely, Figure 2 represents what would
be observed in the experiment. However, although the mapping in
equation (2) establishes a 1-1 corres%)ondence between the number
operators in real space, (a ) (b b;), the density distributions
in momentum space may dlﬂjer 51gn1ﬁlcantly In this sense, a study
of iy = (azak) and the superfluid order parameter in the original
anyonic model (3) would be very interesting, but it is beyond the
scope of this paper. A study of density distributions in momentum
and real space was recently presented for the particular case of
hard-core anyons?.

Phase diagram. Next, we present the phase diagram for condi-
tional-hopping bosons in the (u/U, J/U)-plane. Just as in the case
of ordinary bosons (0=0)—the celebrated phase diagram of the
Bose-Hubbard model’—the anyonic version will display insulating
and superfluid regions. However, we find that the size of the insulat-
ing regions (Mott lobes) grows with increasing statistical angle 6—a
fact that will be central in our proposal to design phase transitions
by tuning the particle statistics.

The phase diagram is calculated as follows. We start with a
unit filling ground state [N=L) and compare the energies with the
ground states of |[N=L=1). This yields the gap energies AE*(L), cor-
responding to the energy required to add or subtract one particle,
respectively. These gap energies were calculated using DMRG for
system sizes L=15, 30, 60, 90 and 120. From the finite-size scal-
ing, we extrapolate the infinite-size values AE*, which are plotted
in Figure 3 in the (u/U, J/U)-plane. Note that a Mott insulator is
associated with a non-zero gap €=AE* —AE", while for the super-
fluid phase £=0 in the thermodynamic limit. For the bosonic case
0=0, we recover the first Mott lobe as in the work by Kiihner and
Monien?”. Turning on the statistical angle and transmuting the bos-
ons into anyons, we observe an expansion of the Mott-like insulating
phase in both dimensions /U and J/U. The phase transition points
(J/U) (defined by the cusps of the Mott lobes) are plotted in the
inset of Figure 3 as a function of 6. In the pseudofermion limit 6—,
the Mott-like phase seems to extend to very large values of J/U.
In contrast, ordinary bosons would form a superfluid state in this
parameter regime. The expansion of the Mott lobes with 6 is also
observed in mean-field (MF) calculations for our model, equation
(4). The MF solution produces very interesting patterns for the tran-
sition lines, as shown in Figure 5. For details of this calculation, see
Methods.

We note that the phase diagrams for conditional-hopping bosons
and for anyons are the same. Owing to the unitarity of the mapping
(2), the two models (3) and (4) are isospectral, and thus feature the
same energy gaps and phase diagrams.

Discussion

We envision the following procedure to demonstrate the first statis-
tically induced phase transition: We fix the parameters at J/U=0.5,
N/L=1 and u=0. We start with a phase detuning 6=0 between
the external driving fields (Methods), and thus realize a superfluid
bosonic gas as the ground state. The phase angle 6 is now continu-
ously increased, leading to anyonization of the gas and growth
of the Mott-like phase. At a critical value 6, the phase border will
surpass the fixed point in parameter space, which will be then
located inside the Mott phase. The critical angle can be estimated
from the phase diagram to be in the range 6.€ [7/2, 37/4]. For laser
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Figure 3 | Phase diagram of the anyonized gas. The Mott lobe
(corresponding to (n)=1) expands with increasing statistical angle 6 in both
directions in the (u/U, J/U)-plane. This demonstrates the novel possibility
to induce a quantum phase transition from the superfluid into the
insulating, Mott-like phase, by simply changing the particle statistics. The
energies AE* are symbolized by circles (crosses), respectively. The critical
phase transition points (U/J),,; are shown on the inset, as a function of 6. In
the extreme limit 86—, (U/J),; tends to zero, that is, pseudofermions seem
to be always in the insulating phase.
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Figure 4 | Fractional Mott plateaus. The density distributions (n) are
plotted for increasing statistical angle 6. In each panel, the density
distribution for ordinary bosons (6= 0, blue line) is drawn for reference.
The distribution at high statistical angles (9—7,7:, marked black and
green) exhibit a Mott-like plateau at the fractional value n=% (marked by
arrows). Parameters: N=L=30, J/U=0.5, \/U=0.01.

detunings beyond this critical angle, 6> 60,, the gas will be in an
insulating Mott-like state. In this way, the variation of the particle
statistics in our proposal directly realizes a novel superfluid-to-Mott
quantum phase transition.

An intriguing aspect of the Mott-like state emerges
when a harmonic trapping potential is added to the system,
Hfr gt +V2i((L+1)/2_i)2ni. This simulates the experimen-
tal conditions also to a more realistic extent. In a harmonic trap,
ordinary Mott insulators form real-space density distributions (n,)
that resemble ‘wedding cakes”®. Because of the broken translational
invariance (induced by the trap), the chemical potential in the local
density approximation now is a function of the lattice sites. The dis-
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Figure 5 | Mean-field solution for the Mott-superfluid transition. The
transition lines are displayed for several values of 6. For comparison, we
display also the data for the bosonic case 6=0 (blue curve).

tribution (n,) thus exhibits plateaus at integer densities, for ordinary
bosons in a Mott-insulating state.

We have computed the density distribution for a system with
additional harmonic confinement, at the same fixed parameter
point as in the procedure outlined above. The result is plotted in
Figure 4. For low statistical phase angles 6 (and thus a superfluid
state), the density distribution displays a smooth, quadratic profile
centred around the minimum of the trap. Beyond the critical phase
angle, 0> 6., Mott-like plateaus appear in (n,). Surprisingly, in addi-
tion to the integer density Mott plateau at n = 1, a new plateau emerges
at the fractional value n="%. Fractional Mott plateaus persist also in
other parameter regimes, when J/U and the trapping potential V are
varied, and seem to form a universal feature of 1D anyonic gases at
large exchange phases 6, which will be subject of a future study.

Recent progress on the experimental side have made direct
imaging of density distributions possible, using ‘quantum gas
microscopy’®?. A few months ago, the plateau structure of the Mott
insulator was directly observed for the first time® at the single-atom
level. This new technique opens up the possibility to directly dem-
onstrate fractional Mott plateaus and to image statistically induced
phase transitions in situ.

In summary, we have shown how to realize fractional statistics
in 1D optical lattices, using bosons in a realistic experimental envi-
ronment. The experiment we propose features the full control and
tuneability of the particles’ exchange statistics—paving the way to
the first statistically induced quantum phase transition.

Methods

Realizing conditional-hopping bosons. In this section we discuss how to real-

ize the conditional-hopping Hamiltonian equation (4), using four different and
independent A-transitions®. In general, we assume a deep optical lattice potential,
giving rise to a negligible bare kinetic tunnelling amplitude J,;,. Let us focus for a
moment on one A-scheme, where two ground state levels |a) and |b) are coupled
through a Raman process via an excited state |e). In our case, |a) and |b) cor-
respond to the wavefunctions of atoms at distance d localized in neighbouring sites
of the tilted lattice V(x) (d being the lattice constant), while |e) experiences another
potential V’(x) (for a brief discussion of two realistic experimental possibilites to
realize V(x), see the main text). The levels have energies E;=hw, i=a, b, e and

the transition between a(b) and e is driven by an external radiation field with
frequency ®,— ®,,— 0, with detuning 0. Note that in our scheme the energies E,
depend on A and U. The Hamiltonian for the three-level A-system reads

H=Y, hoyiXil+ 2, leXal +7 |eXb]+he) ®
i=a,b,e 2
where ¥g(p) = QZ(b)WuE(b)e (0 =0q(p) =0}t . Here, the quantity QZ(};) is the Rabi

frequency for the transition a(b)—e with the atom centred in the same position.
However, as ground and excited states feel different lattices, the x components of
the Wannier functions w(x) are slightly displaced. Thus, the off-diagonal elements
in equation (8) contain the integrals"

We = elka*a JW; (x+x, )eik“xwa (x)dx,

Wy = kb (xa +d)JW; (x+ xe)eikbwa(x +d)dx, )

where k,, is the x-component of the momentum of the driving radiation field, with
modulus | k) |[= (@, — () — 6)/c. x, is the atom position in the left well, while
x, refers to the position in the excited state. Note that the integrals in equation (9) are in
general non-zero, as the two Wannier functions belong to different lattices. The quanti-
ties 7, are complex numbers, whose modulus and phase can be freely tuned by choosing
the appropriate intensity, polarization and direction of the driving fields. For sufficiently
large detunings 8> 7, |, the level |e) can be adiabatically eliminated and in the rotating
wave approximation the effective Hamiltonian in the subspace {|a), |b)} reads
~ 2 ~*a
B (17l Va¥o (10)

S\ w1, WP

Hef =

where 7 is the non-rotating version of ¥, that is, without the time-dependent phase
factors. In order to realize equation (4), we suggest to employ four driving fields
(Fig. 1b) with different frequencies in order to avoid interferences. This situa-

tion would correspond to a maximum of two atoms per site. If the local density
truncation were set to a higher number, more external driving fields would become
necessary. As all fields can be tuned independently from each other, this poses no
problems besides potential budgetary considerations.

The couplings J;3, J,,» /s and ], between the four different levels are then
obtained in terms of the effective Rabi frequencies, ], = ¥,7/20.

Our aim is to satisfy the conditions set in equations (5) and (6) in order to
engineer a state-dependent phase factor. This implies y, = }7le'0, which can be
achieved by the free tuneability of each driving fields’s frequency, intensity, polari-
zation and direction. Furthermore this choice of parameters implies | Ya |= Vb |
, that is, the diagonal elements of the effective Hamiltonian are now equivalent.
Thus, the tilt energy A has vanished via adiabatic elimination, and consequently
also does not appear in equation (4). Indeed, this offset energy between neighbour-
ing sites is compensated by the external radiation field. As the assisted tunnelling
proposed in this article is the only mechanism for hopping in the lattice, unwanted
effects such as Bloch oscillations do not appear in our system (the bare kinetic
tunnelling amplitude ], is assumed to be negligible compared with all energy
scales discussed here).

In summary, the parameters discussed here have to satisfy the following
conditions.

First, Openian <K A, U, so that the external driving fields resolve the different levels
of the ground state manifold. Second, large detunings 6> |y, | are required for a
short-lived excited state and the validity of the adiabatic elimination. Third, A and U
can be in the same frequency regime (a few kHz), but should not be identical (their
difference should be > §;,,.iqun)- As an example, A=2kHz, U=3kHyz, |] ;| =J=5kHz
and |y,,|=20kHz would be sufficient if the linewidth of the radiation field were
Sinewian =50 Hz, which is a realistic assumption for typical radio-frequency driving
fields (see, for example, the works by Campbell et al.*> and McKay and DeMarco®).

Fractional Jordan-Wigner mapping. In the following we prove that anyons are
isomorphic to bosons in 1D.

In particular, we prove that the operators 4, as defined in the non-local map-
ping, equation (2), indeed obey the anyonic commutation relations of equation (1),
provided that the particles of type b are bosons.

For the case i <j we wish to rewrite products of anyonic operators in terms of
the bosonic ones:

-0y . Nk
aia; =he isk<i b;

O icke Mkt -ibn;
" (11)
f(0)aja; = ¢ OFicks" g

-0y . Nk o0
—e i<k<j e 19(”’+1)b;bi.

—i6n; f(e)bJTb,-
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Here we have defined f{(0)=e'**"‘~) and used that f{6) =e ', as i <j was assumed.
We can now evaluate the left-hand side of equation (1):

aal - fO)ala =e 0% ke (beiom — 004Dy Ty

—i0%. e _; (12)
_ ¢ OFicke M g00r 4Dy b1y

=0

Thus, the anyonic commutation relations have been proven for the case i <j. The
proof for the case i>j is very similar. For the case i=j, one just has to note that
aTa = h b; and f(60) = 1. Note that the resulting conditional-hopping bosonic
Hamlltoman equation (4), resembles the exactly solvable model of q-bosons™.
However, this model is not equivalent to our model.

Mean-field calculation. The conditional-hopping bosonic Hamiltonian is given by
equation (4). In addition, we now include also a chemical potential term. Express-
ing energies in units of U (we fix U=1), we have

H= 2[ n(n

](c h]+1+bj+1c ):| (13)

where for convenience we have defined ¢; =¢  Jb;.
In absence of hopping J=0, all the sites are independent and the ground state is
of the Gutzwiller type

['Wo)=] W>®La

ly)= ch(b) I

where v=N/L is the filling factor. The local energies are ev=".v (v-1) - v, while
the local gaps for adding or subtracting one boson are, respectively
ev-1)—¢gv)=

ev+)—-e(v)=v—u, -(v-1)+pu.

So, the ground state in every site has v particles in the interval /.L( v) <u< ,uiv),
with g4t V) —y_1and ,u( = v. The gap in the whole system at a given number of
particles is given by A=1, obtained by removing an atom at some site an putting it
in another one already occupied.

Here the MF is obtalned by decoupling the hopping term as
ci b]+1 = —azal + azh i1+ alc]T , where the order parameters are o, =(b;)

and o, =(c). Accordingly, the Hamiltonian (13) in MF becomes
H=YH;+L(00 +0q,)
j
with

1
H: :Enj(nj

j —]Z(oczh;r +ob; +och

- i

]
The two parameters ¢, and ¢, are not completely independent as as they are both
vanishing or non vanishing at the same time. Of course there is a trivial solution
corresponding to 0;,=0, [=1, 2, which corresponds to the Mott-insulating phase.
The occurrence of oi#0 signals the instability towards superfluid correlations. On
inhomogeneous lattices, a further situation can in principle occur, where o0 only
on a fraction of the lattice sites. The self-consistent relation defines a map o= A0,
obtained by linearizing about the solution ;=0. The instability of the trivial solution
sets in when the maximal eigenvalue of A is > 1. Close to the trivial point, it holds
|| < 1, hence, the kinetic term can be treated perturbatively. Up to first perturba-
tive order, the wavefunction can be written as |y)=|y) + |y/V), where |¢*”) =|v) and

—1)—,[171]' +a1Cj).

V| (xzb; + (x;bj + achT + afcj [v)

Wy=-1
v ; g(v)—&(v)
\/—(a2+ocle 19(v—1))
u-v+1
+]\/v+1(a2+a1e19‘/)|
v-i

lv-1)
V+1)

Hence, using the self-consistency relations o, =(y|b;|y) and o,=(y]c|v),

The matrix A is then
_ (&) A _ oy o
A—][ A f(—Q)J’ fO)=e""[A+(e 1)B]
with
_ H+1 _ lu]+1
(u—[uD)([u]-p+1)° pu—lul’

since every lobe is labelled by v={[u] + 1. The eigenvalues of A are given by

- g[ F(0)+ F(-6)£\J4A% +(£(6)— £(-6))? }

The condition max{A,,A_} =1 signals the onset of instability of the trivial solution
and hence establishes the critical coupling ], along the Mott-superfluid transition
line. In Figure 5, the phase diagrams for several values of 6 are shown. The Mott
lobes expand for non-zero statistical angles 6, a fact central for designing statisti-
cally induced phase transitions.
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